Skip to content

AI Memory

AI that learns from you. Pauhu's AI memory learns from every translation, building contextual understanding of your organization's style, terminology preferences, and domain knowledge.


How AI Memory Works

graph TB
    A[Translation Request] --> B[AI checks memory]
    B --> C{Context found?}
    C -->|Yes| D[Apply learned patterns]
    C -->|No| E[Standard translation]
    D --> F[Translate with context]
    E --> F
    F --> G[Store in AI memory]
    G --> H[Update semantic model]

What AI Remembers

Memory Type Example Retention
Terminology preferences You prefer "tekoäly" over "keinoäly" for "AI" Permanent
Style patterns Formal vs. informal address Per-project
Domain context Legal documents use specific phrasing Per-domain
Sentence structure You prefer active voice Permanent
Acronym expansions First mention expands, subsequent uses acronym Per-document

Contextual Learning

from pauhu import Pauhu

client = Pauhu()

# First translation - AI learns your preference
result1 = client.translate(
    text="AI systems must comply with regulations.",
    target="fi"
)
print(result1.text)
# "Tekoälyjärjestelmien on noudatettava säännöksiä."

# Later translation - AI remembers context
result2 = client.translate(
    text="AI transparency is required.",
    target="fi"
)
print(result2.text)
# "Tekoälyn läpinäkyvyys on vaadittua."
# ↑ Consistently uses "tekoäly" (AI learned your preference)

Session Memory

Within a session, AI remembers:

# Document context maintained across chunks
doc = client.documents.translate(
    file="eu-ai-act-full-text.pdf",
    target="fi"
)

# AI remembers:
# - Document title and subject
# - Previously translated sections
# - Defined terms from earlier in document
# - Writing style (formal, legal)
# - Acronyms already expanded

Example: Pronoun Consistency

# Chunk 1:
"The data controller shall ensure..."
 "Rekisterinpitäjän on varmistettava..."

# Chunk 2 (same document):
"They must also document..."
 "Sen on myös dokumentoitava..."
# ↑ AI remembers "they" = "data controller" (singular in Finnish)

Project Memory

Per-project, AI maintains:

project = client.projects.create(
    name="EU Legislation Q1 2025",
    domain="10 European Union"
)

# AI learns project-specific patterns:
# - Preferred terminology variants
# - Style guide compliance
# - Reviewer corrections
# - Glossary terms in context

Memory Updates from Corrections

# Original translation
result = project.translate(
    text="machine learning algorithm",
    target="fi"
)
print(result.text)
# "koneoppimisalgoritmi"

# User corrects
project.memory.correct(
    source="machine learning algorithm",
    target_was="koneoppimisalgoritmi",
    target_should_be="koneoppimisen algoritmi",
    reason="Organization style guide"
)

# Future translations remember
result2 = project.translate(
    text="Our machine learning algorithms are transparent.",
    target="fi"
)
print(result2.text)
# "Koneoppimisen algoritmimme ovat läpinäkyviä."
# ↑ AI remembered the correction

Semantic Memory Integration

AI memory connects to:

Translation Memory (TM)

# AI learns from TM matches
result = client.translate(
    text="data protection impact assessment",
    target="fi"
)

# AI checks:
# 1. TM for exact/fuzzy matches
# 2. AI memory for similar phrases
# 3. Context from both sources
# → "tietosuojaa koskeva vaikutustenarviointi" (learned from TM)

Term Base

# AI learns term usage patterns
# Term Base says: "AI" → "tekoäly"
# AI Memory learns: "AI systems" → "tekoälyjärjestelmät" (compound)
#                   "AI-powered" → "tekoälypohjainen" (adjective)

Cross-Language Memory

AI remembers patterns across language pairs:

# EN → FI translation
result1 = client.translate(
    text="The regulation applies to all AI systems.",
    source="en",
    target="fi"
)

# EN → SV translation (different target)
result2 = client.translate(
    text="The regulation applies to all AI systems.",
    source="en",
    target="sv"
)

# AI applies similar structure:
# FI: "Säännös koskee kaikkia tekoälyjärjestelmiä."
# SV: "Förordningen gäller alla AI-system."
# ↑ Consistent passive voice pattern learned

Privacy and Data Retention

What's Stored

# Encrypted in AI memory:
# ✓ Terminology preferences
# ✓ Style patterns
# ✓ Structural preferences
# ✓ Domain-specific knowledge

# NOT stored:
# ✗ Source text content
# ✗ Translated content
# ✗ Personal data

Client-Side Encryption

AI memory is encrypted client-side:

client = Pauhu(
    client_side_encryption=True  # Default
)

# Your AI memory patterns are encrypted before storage
# Pauhu cannot read your preferences or patterns

Memory Management

# View AI memory statistics
stats = client.memory.stats()

print(f"Learned patterns: {stats.pattern_count}")
print(f"Terminology preferences: {stats.term_preferences}")
print(f"Style rules: {stats.style_rules}")
print(f"Memory size: {stats.size_mb} MB")

# Reset AI memory for project
project.memory.reset()

# Export AI memory (for backup)
project.memory.export("./ai-memory-backup.json")

# Import AI memory (restore from backup)
project.memory.import_file("./ai-memory-backup.json")

Compliance

GDPR Article 22 (Automated Decision-Making)

"The data subject shall have the right not to be subject to a decision based solely on automated processing..."

AI memory does not make decisions - it assists human translators with learned preferences.

ISO 17100:2015

"Translation resources shall include... reference materials and terminology resources"

AI memory augments traditional TM/term base with learned contextual patterns.


Performance Impact

AI memory improves over time:

Translations Quality Improvement Speed Improvement
0-100 Baseline Baseline
100-1,000 +5% +10%
1,000-10,000 +12% +25%
10,000+ +18% +35%

Based on BLEU scores and processing time vs. cold start


Getting Started

from pauhu import Pauhu

client = Pauhu()

# AI memory is enabled by default
result = client.translate(
    text="Your content here",
    target="fi"
)

# AI learns from every translation
# Check what AI remembered
print(result.metadata.patterns_learned)
# ["term_preference", "style_pattern"]

Further Reading